
Journal of Computational Physics 218 (2006) 510–548

www.elsevier.com/locate/jcp
A generalized finite-difference (GFD) ALE scheme
for incompressible flows around moving solid bodies on

hybrid meshfree–Cartesian grids

C.S. Chew a, K.S. Yeo b,*, C. Shu b

a The Institute of High Performance Computing (IHPC), CFD Division, 1 Science Park Road, #01-01, The Capricorn,

Singapore Science Park II, Singapore 117528, Singapore
b Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

Received 9 March 2005; received in revised form 6 January 2006; accepted 22 February 2006
Available online 18 April 2006
Abstract

A scheme using the mesh-free generalized finite differencing (GFD) on flows past moving bodies is proposed. The aim is
to devise a method to simulate flow past an immersed moving body that avoids the intensive remeshing of the computa-
tional domain and minimizes data interpolation associated with the established computational fluid methodologies; as such
procedures are time consuming and are a significant source of error in flow simulation. In the present scheme, the moving
body is embedded and enveloped by a cloud of mesh-free nodes, which convects with the motion of the body against a
background of Cartesian nodes. The generalized finite-difference (GFD) method with weighted least squares (WLS)
approximation is used to discretize the two-dimensional viscous incompressible Navier–Stokes equations at the mesh-free
nodes, while standard finite-difference approximations are applied elsewhere. The convecting motion of the mesh-free
nodes is treated by the Arbitrary Lagrangian–Eulerian (ALE) formulation of the flow equations, which are solved by a
second-order Crank–Nicolson based projection method. The proposed numerical scheme was tested on a number of prob-
lems including the decaying-vortex flow, external flows past moving bodies and body-driven flows in enclosures.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Computational fluid dynamics (CFD) is traditionally practised using mesh-based methods like the finite
element (FE), finite volume (FV) and finite difference (FD), and they are widely accepted as the mainstream
solution tools. While the mesh structure allows the FE and FV methods to handle complex geometries
effectively, the same structure becomes a limitation when one has to alter the meshing to accommodate a
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continuously changing computational domain. Problems of this nature are becoming common today, particu-
larly with the growing preoccupation of engineers with biologically motivated problems, where large boundary
motions are frequently encountered. Besides appearing cumbersome and inelegant, extensive remeshing and
data interpolation in these methods can add to computational costs and solution inaccuracies. The traditional
finite-difference method is highly effective when coordinate transformations are available to simplify the com-
putational geometries. Unlike FE and FV methods, however, the transformation approach cannot be extended
to complex geometries.

In recent decades, a new class of what is termed mesh-free or meshless numerical methods has flourished.
This is due in part to their ability to alleviate some of the shortcomings of the conventional procedures. As
opposed to mesh-based methods, they do not require pre-specified connectivity between the computational
nodes or grid points. There is no need to identify the element or volume edges and surfaces. These methods
are thus better able to represent irregular boundaries and negotiate complex spaces with ease and flexibility.
Mesh-free methods are known to originate from the works of astrophysicists. The smooth particle hydrody-
namics (SPH) method [1] is used to simulate astrophysical phenomena such as exploding stars and dust clouds.
This method belongs to the class of particle methods [2] which adopts kernel approximations to obtain the
Lagrangian flow field. Belytschko et al. [3] provided a detailed description of the broad spectrum of mesh-free
methods that have been developed, including the diffuse element method (DEM) [4], the element-free Galerkin
method (EFG) [5], the reproducing-kernel particle method (RKPM) [6], the partition of unity method (PUM,
or PUFEM) [7], hp clouds [8], finite point method (FPM) [9–11] and the generalized finite-difference method
(GFD) [12–15]. These methods have been applied to various problems in solid and fluid mechanics.

Particle methods like SPH and the vortex particle method are Lagrangian in nature and avoid grid-based
numerical dissipation, which causes the flow to be more viscous. However, these ‘particles’ require good dis-
tribution and redistribution, and their Lagrangian nature makes this difficult in flows with extensive boundary
motions. DEM and EFG belong to the type of mesh-free methods that are integral by nature. In this sense,
they are not strictly ‘free from mesh’, and may suffer from the same deficiencies as the FE methods in moving
body problems. The truly mesh-free methods are the non-integral types in hp clouds, FPM and GFD. These
methods adopt mesh-free computational nodes that may not necessarily be Lagrangian in nature, and such
nodes may be more suited for handling flows with moving boundaries.

As mentioned earlier, there has been growing interest in the modeling of moving boundary problems, which
is aided not least by the continuous increase in computing power and corresponding reduction in the cost of
computation. In this paper, we shall concern ourselves with the development of a hybrid mesh-free computa-
tional scheme for the simulation of flows past and flows driven by moving solid bodies. We believe the advan-
tages of mesh-free methods can be harnessed to solve this class of problem. Before we proceed with the details
of the new scheme, we shall first present a broad overview of the various methods that have been devised over
the years to deal with the simulation of moving boundary/body problems.

Methods for solving moving boundary or interface problems fall under two main categories: those that
employ boundary-fitted grids (also termed body-conformal grids) and those that employ non-boundary-fitted
grids. A method is boundary-fitted when the boundaries or interfaces coincide with the computational nodes
or grid points. The nodes/grid points then clearly demarcate the interface, and morph and move with the inter-
face during motion. Boundary conditions are applied directly on the interface, and the motion of the interface
is explicitly tracked. The two common boundary-fitted methods are composite grids [16,17], which are
normally applied with finite differencing, and FV or FE schemes, which are frequently implemented with
the arbitrary Lagrangian–Eulerian (ALE) formulation [18].

Composite grids with generalized coordinates and transformed governing equations are commonly used to
embed solid objects within flows. A separate set of coordinate frame and grid points (the sub-mesh) are gen-
erated for each embedded object. Local sub-meshing is usually performed using an orthogonal or algebraic
grid generator. Communication between the main and the local meshes is usually done through extensive
interpolation of data between the meshes, typically at the outer boundaries of the mesh systems. Apart from
interpolation, the sub-meshes are also restricted in their geometric complexity due to the use of generalized
coordinates. The second boundary-fitted method involves the use of unstructured grids with FE or FV meth-
odologies to solve for the flow in arbitrary Lagrangian–Eulerian (ALE) formulation [19,20]. This is an elegant
approach in which the solution is derived based on a mixed treatment of grid points in either the Lagrangian
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or the Eulerian fashion. The use of FE or FV, however, requires constant remeshing near areas of interfacial
motion. Computational overheads are incurred in both mesh administration and data interpolation into the
new meshes that may considerably slow down the course of simulation. In boundary-fitted methods, there are
also potential errors arising from equation transformation, data interpolation and complex discretization
along the interface. There are also a number of positive features in this category of methods. The boundary
conditions are accurately represented and directly applied onto the interface. One can also have control over
the grid resolution near the interface, and, as a result, obtain desirable flow resolution. With the advent of
computer technology, the advantage of resolution control may well prove to outweigh the disadvantage of
costly overheads.

Non-boundary-fitted (non-body-conformal) methods mainly employ a single ‘background’ mesh which
may be in structured or unstructured form. Mittal and Iaccarino [21] provided a review of these methods.
The interface can be traced by a series of ‘marker nodes’, and methods are distinguished by their different
treatments on these nodes, as well as the implementation of the boundary conditions. For interface treatment,
the two means of defining the interface are front tracking and front capturing. Front tracking (e.g. [22–27])
employs explicit derivation of the ‘marker node’ velocity to track the interface motion. The front capturing
approach uses a phase function to solve for the evolution of the interface. In volume of fluids (VOF) methods
[28,29], the volume fraction is solved in the form of an advection equation. The volume fraction ranges
between 0 and 1, of which the two extreme values represent the two different phases within the flow. When
the value in a cell is between 0 and 1, the interface lies within that computational cell, and the position of
the line of interface will be determined through the contributions of the neighbouring cells. In the case
of the level set method [30,31], the solution field provides the interface as the zero level set of a smooth func-
tion. Because of this feature, the level set method can handle topographic merging and breaking very easily.
Front capturing is considered implicit due to the way it obtains the interface, as compared to the more explicit
form of front tracking.

Non-boundary-fitted methods can also be distinguished by their treatment of boundary conditions. They
can basically be classified as Cartesian or Immersed Boundary. Cartesian methods are often front tracking
methods, whereby the interface is identified by its boundary nodes. The background cells (or stencils) are mod-
ified by the intersection between the cell and the interface. By applying the boundary conditions on the inter-
face with interpolation, the cell flow field is obtained.

Immersed boundary methods [32–34] employ force terms as source terms in the equations of motion to
account for the effects of the boundary, like mass conservation and no-slip conditions. These modified equa-
tions are solved in the background grid, and interfacial motion is then derived through interpolation from the
background. The new boundary topology then determines the new interfacial forces to be used in the equa-
tions of motion. Traditionally, the force terms are implemented over a small ‘band’ of cells in the immediate
vicinity of the interface via the delta function. This practice enables conservation, but at the expense of a ‘dif-
fuse interface’ that smears out flow details near the interface, like boundary layers. As a result, finer cells are
usually required in the interface region to obtain the desired features.

Recently a class of a hybrid mix of Cartesian and immersed boundary methods has emerged (aptly called
hybrid Cartesian/immersed boundary, HCIB, e.g. [27]). Basically, the boundary conditions are applied at the
background nodes nearest to the interface. The variables at these nodes are interpolated from the interior
nodes with known solved values and from the nodes at the boundary itself. This method retains the boundary
as a sharp interface and is relieved of the need for explicit force terms in the governing equations.

From a negative point of view, non-boundary-fitted methods rely solely on the background grid for flow
resolution. There is thus limited grid control. Though new schemes have emerged which include the use of
adaptive local grid refinement [35] to alleviate this problem, this additional step may still be difficult to imple-
ment on moving boundaries. Also, some of the explicit boundary treatment like the cut-cell stencil modifica-
tion make boundary condition implementation somewhat complex when huge numbers of moving boundary
cells are involved. The issue of a diffused interface representation also poses an age-old disadvantage for some
of the non-boundary-fitted methods.

Having mentioned the drawbacks, non-boundary-fitted methods are still very attractive and remain as
competitive alternatives in recent times. Firstly, the diffuse interface problem has been addressed by many vari-
ants, and many of them are now able to maintain the boundary as a sharp interface. Secondly, the established
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non-boundary-fitted methods are generally conservative and are able to handle phase jumps easily. Compared
to boundary-fitted methods, they are better able at managing deforming interface problems, which is often the
case in biological applications. These methods can also make use of powerful, low cost numerical tools like line
methods and multigrid solvers.

Taking into consideration the advantages and limitations of the various approaches for modeling moving
boundary flow problems, there clearly exists an opportunity to develop a fresh approach, in which one hopes
to minimize some of the cumbersome and potentially error-prone features of existing schemes, and to
strengthen numerical representation in the area of the boundary. In this paper, we formulate a scheme based
on a convecting mesh-free grid. The proposed method makes use of generalized finite-difference (GFD) approx-
imation in weighted least squares (WLS) form and the governing flow equations in ALE formulation. The
method of WLS-GFD has been discussed by Ding et al. [36,37]. Essentially, the mesh-free scheme is built on
the performance of mesh-free computations around a cloud of mesh-free nodes that cluster around the moving
body. The nodal cloud convects with the moving body against a background of Cartesian non-staggered grid
points, and all computations are carried out within a single Cartesian reference frame. Grid resolution may be
easily controlled by regulating the nodal cloud density, and nodes can be added and removed with ease for
bodies that deform extensively – we shall, however, be concerned here with solving problems of rigid moving
bodies at this stage of the study. There is no need to identify cells, faces, edges and vertices in this scheme; and
the least-square based difference approximation permits direct interpolation of computational data to acquire
fluid properties on ‘fresh’ or new nodes with ease and accuracy.

The main emphasis of the paper is on the simulation of the incompressible Navier–Stokes flows in the prim-
itive variables of velocity and pressure (u, v, p) in two dimensions. All of the flows simulated involved rigid
bodies, both stationary and under prescribed motion. The weighted least squares form of the generalized
finite-difference (WLS-GFD) approximation is briefly described in Section 2. The numerical scheme for the
flow equations and the treatment of fresh nodes are described in Section 3. The method is first tested on estab-
lished flow problems with stationary boundary in Section 4, where the overall spatial and temporal accuracy
of the scheme is also evaluated. A moving patch/cloud test (with no embedded object) is also carried out to
study spatial accuracy and the effects of node convection (with node removal and fresh node creation) on com-
putational error. The full ALE-WLS-GFD scheme is applied to circular cylinders undergoing prescribed accel-
eration and oscillatory motions in Section 5. The results obtained are compared against published results as
well as results that are computed using an equivalent moving frame under the same ALE-WLS-GFD scheme.
Finally the method is applied to three flow cases in Section 6. In box enclosures, a flapping ellipse, an asyn-
chronous counter-rotating pair of beams, and an oscillating cylinder demonstrate the capability of the pro-
posed scheme to solve flows driven by multiple, non-collisional moving solid boundaries up to moderately
high Reynolds numbers.
2. The weighted least square generalized finite-difference method

The generalized finite-difference (GFD) method is based on the Taylor series expansion. For a two-dimen-
sional function f(x), where x = (x, y), the value of the function at x1 = x0 + Dx1 is given in terms of the deriv-
ative values of the function at the reference node point x0 to order m by
f ðx1Þ ¼ f ðx0Þ þ
X

16j1þj26m�1

Dxj1
1 Dyj2

1

j1!j2!
½oj1

x oj2
y f �x0

þOðjDx1jmÞ; ð1Þ
where ox and oy denote the partial derivatives with respect to the coordinate variables x and y respectively. If
the values f(xi) = fi (i = 0, 1, . . . , n) of the function are known at a number of points (neighbours; see Fig. 1)
xi = x0 + Dxi, one may truncate the Taylor series Eq. (1) appropriately and approximate the derivatives
ðoj1

x o
j2
y f Þx0

of the function at the reference node x0 by solving a system of linear equations. For such an approx-
imation, one will typically select the points xi (i = 1, . . . , n) which are in the immediate or near-neighbourhood
of x0. The neighbours or support nodes xi are usually taken to be points within a prescribed distance d0 from the
reference node, |xi � x0| = |Dxi| < d0. Alternatively, one may also use only a subset of the neighbouring node
points according to certain criteria [9,10] designed to improve the accuracy of derivative approximation. When
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Fig. 1. Schematic of a typical reference node with its ‘neighbours’ within its radius of support, do.
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the Taylor series Eq. (1) is truncated after the third-order derivative (i.e. m = 4), we obtain the following linear
system, which relates the derivatives of9�1 ¼ ðox; oy ; o

2
x ; oxoy ; . . . ; o3

yÞ
Tf jx0

of f at x0 to the functional values of f

at x0 and the n support nodes:
Dfn�1 ¼ ½S�n�9of9�1; ð2Þ

where Dfn·1 = (f1 � f0, f2 � f0, . . . , fn � f0)T, and
½S�n�9 ¼

Dx1 Dy1 Dx2
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For m = 4, n = (m � 1)(m + 2)/2 = 9 support nodes are needed to exactly close the linear system. If the matrix
[S] is non-singular, one may then solve Eq. (2) to obtain the derivative vector of9·1; with formal accuracies of
O(|Dx|3) and O(|Dx|2) for the first- and second-order derivative components of of9·1 respectively.

While the above approach to approximating the derivatives numerically is sound in theory, it may suffer
from ill-conditioning of the matrix [S] due to poor spatial arrangement of the support nodes. Ill-conditioning
can arise from a variety of causes such as extremely close separation between some nodes or large number of
nodes aligning in a nearly collinear manner.

To overcome the above problem associated with solving Eq. (2) directly for the numerically exact func-
tional derivatives of9·1, one may instead seek a numerically approximate solution for of9·1 that minimizes
some measure of the residual error, En·1 = Dfn·1 � [S]n·9of9·1 for Eq. (2). It is a common practice in such
a case to minimize the squares of the residual error. This is equivalent of course to a minimization of the
square of the Euclidean l2-norm i i2 of error, i.e. minoffkEn�1k2

2g. We note that
kEn�1k2
2 ¼ ðDfn�1 � ½S�n�9bÞTðDfn�1 � ½S�n�9bÞ; ð4Þ
where b is the abbreviated form for ofn·1, so that the variation of kEn�1k2
2 with respect to b is given by
DbkEn�1k2
2 ¼ ðbT½ST�½S� � ðDfÞT½S�ÞðDbÞ þ ðDbÞTð½ST�½S�b� ½ST�DfÞ þOðjDbj2Þ; ð5Þ
where some of the subscripts for matrix dimension have been omitted for brevity, and Db denotes the variation
of b. The stationary property at the point of minimum square error then yields the following linear equation:
½ST�9�n½S�n�9of9�1 ¼ ½ST�9�nDfn�1; ð6Þ
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by which the functional derivatives of9·1 may be determined. Eq. (6) can be seen to be merely a preconditioned
form of the original Eq. (2) for the functional derivatives, where the preconditioner is just the transpose of the
coefficient matrix [S]. The coefficient matrix [ST]9·n[S]n·9 for Eq. (6) is symmetric, and also positive-definite if
the columns of [S]n·9 are independent. The advantage of casting the original problem Eq. (2) in the least
square form of Eq. (6) is that it allows an over-determined system (n > 9) of support nodes. This is a crucial
property, for by including more support nodes xi (i = 1, . . . , n) than the number of unknown functional deriv-
atives in of9·1, one can always ensure the columns of [S]n·9 are independent, and hence the existence of solu-
tion. It is pertinent to note in passing that there are alternative formulations/algorithms of the least square
problem via the orthogonalization or singular value decomposition procedures that may have improved
numerically properties, albeit at increased computational cost. The normal equation approach Eq. (6) for
approximating the functional derivative of9·1 is found to be adequate for our purpose here.

The least square approach can be further refined by the incorporation of weight factors wi (i = 1, . . . , n) for
the errors at the support nodes. The weight factors are normally designed to give greater importance to errors
at nodes that are located nearer to the reference node. The square of the weighted norm function is
kEW
n�1k

2
2 ¼ ðDfn�1 � ½S�n�9bÞT½W n�ðDfn�1 � ½S�n�9bÞ; ð7Þ
where [Wn] = Diag{w1, w2, . . . , wn} is the diagonal matrix of weight factors. The least square Eq. (6) is then
½ST�9�n½W n�½S�n�9of9�1 ¼ ½ST�9�n½W n�Dfn�1. ð8aÞ

or, in component form,
X9

k¼1

Xn

j¼1

wjSjiSjkofk ¼
Xn

j¼1

Sjiwjðfj � f0Þ ði ¼ 1; 2; . . . ; nÞ; ð8bÞ
where ofk is the kth component of of9·1. The following nodal weighting function used by Duarte and Oden [8]
is applied in the present study:
wi ¼
ffiffiffiffiffiffiffiffiffiffi
4p�1
p

ð1� jDxi=d0j2Þ4. ð9Þ

The functional derivatives of9�1 ¼ ðox; oy ; o

2
x ; oxoy ; . . . ; o3

yÞ
Tf jx0

are obtained by solving Eq. (8), i.e., by inverting
the matrix [ST][W][S] to give
of ¼ ð½ST�½W �½S�Þ�1½ST�½W �Df ¼ ½C�Df; ð10Þ

where [C] = ([ST][W][S])�1[ST][W].

The matrices [ST], [S] and [W] are all dependent only on the geometrical distances between the reference
node and its neighbours. For stationary boundary problems (for which the mesh-free nodes are fixed), one
needs only to invert the matrix of [ST][W][S] in Eq. (8) once to obtain the functional derivatives of as a linear
function of the nodal values Df for each of the nodes.
3. Numerical procedures

3.1. Classification of computational nodes

We are interested in the class of incompressible viscous flows in domains whose boundaries may subject to
prescribed motion in time. In particular, we are interested here in the motion of internal boundaries associated
with moving rigid bodies immersed in flow. These boundaries are defined by a set of mesh-free nodes denoted
here as boundary nodes (see Fig. 2). To facilitate the discretization of the space around possibly complex body
shapes or geometries, the immediate neighbourhood of the bodies/boundaries may be covered with a cloud or
cluster of or mesh-free nodes that extends to a few boundary-layer thicknesses of the flow past the boundary.
We term these the cloud nodes. The boundary and cloud nodes are associated with the body that they define
and envelop respectively. The body and its enveloping cloud of mesh-free nodes are set against a background
of Cartesian nodes. The Cartesian nodes are assumed to be fixed in their spatial positions in the present work
and the motion of the bodies/boundaries is carried out against this background of fixed Cartesian nodes. The
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boundary and cloud nodes will convect with the prescribed motion of their associated body. The boundary
nodes can generally be regarded as a part of the cloud nodes. All of these are considered with respect to a
single Cartesian reference frame.

The cloud nodes form a contiguous cover around the body. We define the cloud cover here (cloud for short) to
be the contiguous region of space between the body and the outermost line of cloud nodes (Fig. 2). For the
evaluation of spatial derivatives, four categories of the background Cartesian nodes may be defined. Category

1 comprises the set of Cartesian nodes that are overlapped by a body or its cloud cover. These inactive nodes are
termed the overlapped Cartesian nodes. The Category 2 Cartesian nodes are nodes that have the exact 5-point
Cartesian finite-difference nodal template (see nodes 11 and 12 in Fig. 2). These nodes are usually located at a
distance from the body and cloud so that there are none of the cloud nodes within the closed rectangular
[�Dx, Dx] · [�Dy, Dy] neighbourhoods of these nodes. The Category 3 Cartesian nodes are Cartesian nodes
around the peripheral limit of the cloud nodes. These nodes have one or more of cloud nodes within their
[�Dx, Dx] · [�Dy, Dy] neighbourhoods. Examples are nodes 1 and 7 in Fig. 2, owing to the presence of cloud
nodes 0 and 3. The last or Category 4 Cartesian nodes are fresh nodes that are produced during the motion of
a body or boundary. They are described in greater detail in Section 3.4. The nodal memberships of the four
categories of Cartesian nodes will change with the motion of the body.

The overlapped or Category 1 Cartesian nodes are not directly involved in flow computation. The inexpen-
sive standard 5-point central finite-difference scheme is applied for the evaluation of spatial derivatives at Cat-
egory 2 Cartesian nodes, which usually form the bulk of the nodes in the computational domain. Spatial
derivatives at Category 3 Cartesian nodes and cloud nodes around immersed bodies are evaluated by the
mesh-free weight-least-squares generalized-finite-difference (WLS-GFD) scheme of the preceding section.
We refer to these two groups of nodes broadly as the mesh-free nodes to reflect the manner spatial derivatives
are evaluated. Each mesh-free node has an associated disk of radius d0, which contains a sufficient number of
support nodes for the evaluation of the derivatives (Fig. 2). The radius d0 will in general vary inversely with the
spatial density of the computational nodes.

3.2. The fractional step algorithm for fluid flow

The temporal evolution of the velocity and pressure fields (u, p) of an incompressible viscous fluid is gov-
erned by the Navier–Stokes equations,
otuþ ðu � rÞu ¼ �rp þ 1

Re
r2u; ð11Þ

r � u ¼ 0; ð12Þ
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presented in a non-dimensional form here, where Re = UL/m is the Reynolds number based on a characteristic
velocity U, characteristic length L and the kinematic viscosity of the fluid m.

The fractional-step or projection method by Chorin [38,39] is applied for the temporal treatment of the flow
equations. A recent survey of projection methods for incompressible viscous flows was given by Brown et al.
[40], with particular emphasis on the proper implementation of the pressure boundary condition. In the pro-
jection method, a modified version of the momentum equation (11) in discretized form is first advanced in time
to provide an approximation u* for the velocity field un+1 at the next time level. The intermediate velocity field
u* will not, in general, satisfy the divergence-free condition for incompressible flow. The velocity correction or
projection step involves the solution of a Poisson equation for pressure (or pressure correction) that is derived
from the enforcement of the continuity equation (12). The pressure/pressure correction thus obtained is used
to correct or project u* onto un+1 in the subspace of divergence-free solution. The pressure equation varies with
the different variants of the fractional step method – some solve the pressure directly while others may employ
an auxiliary variable related to pressure.

The momentum equation (11) is first discretized into a semi-implicit form here by the application of the
second-order Crank–Nicolson scheme:
unþ1 � un

Dt
¼ 1

2
�rp � u � ruþ 1

Re
r2u

� �n

þ �rp � u � ruþ 1

Re
r2u

� �nþ1
( )

. ð13Þ
The present fractional step procedure involves the following splitting of Eq. (12):
u� � un

Dt
¼ 1

2
�rp � u � ruþ 1

Re
r2u

� �n

þ �u � ruþ 1

Re
r2u

� �nþ1
( )

; ð14Þ

unþ1 � u�

Dt
¼ � 1

2
rpnþ1. ð15Þ
Applying the divergence operator to Eq. (15) and invoking the continuity condition Eq. (12) for the velocity
field at the (n + 1) time level yields the pressure Poisson equation:
r2pnþ1 ¼ 2

Dt
r � u�. ð16Þ
The computational algorithm involves stepping Eq. (14) forward in time to give the intermediate velocity field
u* subject to the following condition on the boundary oX of the flow domain:
u�oX � unþ1 þ Dt
2
rp̂

� �
oX

; ð17Þ
where p̂ represents the latest available approximation to the value of pn+1.
With u* thus determined, the pressure Poisson equation (16) is now solved subject to the following Neu-

mann boundary condition:
n � rpnþ1joX ¼
2

Dt
½n � ðu� � unþ1Þ�oX; ð18Þ
which is derived by taking the dot product of Eq. (15) with the outward surface normal n on the boundary. The
solution of the pressure Poisson equation (16) then yields the pressure field pn+1, which is then substituted into
Eq. (15) to determine the velocity field un+1 at all the interior nodes of the flow domain. The typical implemen-
tation of the projection method involves the iteration of the first fractional-step equation to determine u*. This is
then followed by the solution of pressure Poisson equation and projection onto un+1 to complete the time step.
The present scheme is similar to that of Kim and Moin [41], who employed pn in place of p̂ in (17). Kim and Moin
[41] showed that in their three-level time scheme, the estimate pn for pn+1 is sufficient to give second-order accu-
racy in the velocities. In the present implementation, the fractional-step equations (14)–(18) are solved together in
an iterative manner at each time level. This ensures good overall numerical stability and accuracy under condi-
tion of continuously changing boundary. Importantly, the iterative approach allows us to update p̂ towards pn+1
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at each time level. This enables Eq. (13) to be fully reconciled, thus ensuring the scheme is fully second order,
according to the study presented by Brown et al. [40].
3.3. Treatment for convecting nodes

The previous section describes the computational formulation for stationary nodes in a fixed frame of ref-
erence. They are not applicable to the boundary nodes and the cloud nodes that convect with the motion of the
boundary. The corresponding equations for arbitrary convecting nodes with nodal velocity uc can be easily
derived by applying Taylor expansion in space and time to account for functional variation due to the motion
of the node. The consequence of nodal motion is simply to transform the Navier–Stokes equation into the
following slightly modified form:
otuþ ðu� ucÞ � ru ¼ �rp þ 1

Re
r2u; ð19Þ
which had appeared in the context of the arbitrary Lagrangian–Eulerian (ALE) formulation of Hirt et al. [18].
When uc is chosen to be equal to the local fluid velocity u, Eq. (19) tracks the variation of u for a fixed particle
of fluid, and u is then simply the Lagrangian flow field. The fractional-step equations for convecting nodes are
essentially the same as those for stationary nodes with the exception of Eq. (14), which must now be replaced
by
u� � un

Dt
¼ 1

2
�rp � ðu� ucÞ � ruþ 1

Re
r2u

� �n

þ �ðu� ucÞ � ruþ 1

Re
r2u

� �nþ1
( )

. ð20Þ
At a solid boundary, the no-slip velocity condition dictates that u = uc, where uc is the prescribed (Lagrangian)
velocity of the solid surface, which is non-zero for moving solid boundaries. The boundary velocity un+1|oX in
the boundary conditions (17) and (18) are then simply the known prescribed velocity of the boundary unþ1

c at
the n + 1 time level. For interactive boundary problem unþ1

c will be determined as part of the numerical iter-
ation subject to fulfillment of other additional dynamical conditions.
3.4. Numerical treatment of ‘fresh’ Cartesian nodes

In the course of its motion, a body and its nodal cloud will overlap new Cartesian nodes in its path. The
overlapped nodes then become the inactive Category 1 nodes, which are not directly involved in flow compu-
tation. The forward motion of the body and cloud also uncovers Cartesian nodes in its rear. Fig. 3(a) shows
node 0 as a Category 1 node under the cover of the nodal cloud at time level n; it is not involved in flow com-
putation at this time level. The forward motion of the nodal cloud uncovers node 0 at time level (n + 1) in
Fig. 3(b). Cartesian nodes thus uncovered by the motion of the nodal cloud are termed fresh nodes or Cate-

gory 4 Cartesian nodes. Fresh node 0 thus uncovered is not able to immediately partake in flow computation
at the time level (n + 1) because it lacks the requisite flow field data at the preceding time level n. To prepare
fresh node 0 for full participation in flow computation at the next time level (n + 2), its flow field data (u, p) at
the current time level (n + 1) is derived by applying Taylor’s series expansion Eq. (1). There are a number of
ways this can be done; by forward extrapolation from the nearest one or more cloud nodes using Eq. (2). A
somewhat more implicit scheme is used here, which involves backward interpolation from the nearest one or
more cloud nodes to the fresh node:
Dunþ1
1 ¼ Dxnþ1

1 ;Dynþ1
1 ;

1

2
ðDxnþ1

1 Þ
2
;
1

2
ðDynþ1

1 Þ
2
;Dxnþ1

1 Dynþ1
1

� �
� ou0; ð21Þ
where Dunþ1
1 ¼ unþ1

1 � unþ1
0 ;Dxnþ1

1 ¼ xnþ1
1 � xnþ1

0 ;Dynþ1
1 ¼ ynþ1

1 � ynþ1
0 , and subscript 1 refers to values at the

nearest cloud node (see Eq. (2)). In Eq. (21), ou0 consists of (i) the elements of the [C] matrix of the fresh node
(which are purely geometrical and already determined), (ii) the variables at its neighbouring nodes ui,
i = 1, 2, . . . , n, neighbours, and (iii) the unknown value of unþ1

0 itself. The only unknown in this equation is
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Fig. 3. Convection of nodal cloud region (shaded grey) to the right: (a) Node 0 is an inactive overlapped node (Cat. 1) at time level n, (b)
Node 0 becomes a fresh node (Cat. 4) at time level n + 1, with flow values interpolated from cloud nodes 1 and 2, (c) Node 0 becomes a
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nodes (Cat. 2) r; WLS-GFD treated Cartesian nodes (Cat. 3) j; Cartesian fresh nodes (Cat. 4) d.
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unþ1
0 , which can be solved for. If two nearest cloud nodes 1 and 2 (Fig. 3(b)) are used to give two estimates of

unþ1
0 , say ðunþ1

0 Þ1 and ðunþ1
0 Þ2, then a weighted approximation such as the following may be used:
unþ1
0 ¼ r2ðunþ1

0 Þ1 þ r1ðunþ1
0 Þ2

r1 þ r2

; where rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxnþ1

k Þ
2 þ ðDynþ1

k Þ
2

q
. ð22Þ
An alternative approach for interpolation may be through the use of polynomial functions, as described in
[26]. With (u, p)n+1 thus determined, fresh node 0 is ready to participate fully in flow computation as a com-
putational Cartesian node at time level (n + 2). Since there are cloud nodes in its close neighbourhood (see
Fig. 3(c)), node 0 will be a Category 3 Cartesian node at the time level (n + 2) and will require the mesh-free
WLS-GFD spatial derivative treatment. The treatment of the overlapped and fresh nodes reflects the manner
in which nodal deletion and addition may be carried out in the present scheme.
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In the present hybrid Cartesian–meshfree grid scheme with WLS-GFD for spatial discretization, interpo-
lation of data is confined primarily to acquiring flow field values for fresh nodes. While this is a positive fea-
ture of the present method, the WLS-GFD discretization scheme generally requires more supporting
neighbours per node than the usual mesh-based methods. Considering the two-dimensional Taylor series
expansion (1), to obtain the gradients oxf or oyf with second-order accuracy, the expansion needs to include
terms up to the second-order derivatives. With 5 unknown derivative terms, at least 5 neighbour nodes are
required. To obtain second-order accuracy for the second-order derivatives, e.g. oxxf, at least 9 neighbours
are required. Usually more nodes than the minimum required are used for improved accuracy. This implies
a heavier computational cost for every mesh-free node (i.e., the cloud nodes and Category 3 Cartesian nodes)
that requires the WLS-GFD treatment. However, the burden is not too excessive in exchange for the many
advantages that it confers because the population of mesh-free nodes in most problems is usually much smaller
than the population of the Category 2 Cartesian nodes (a mere few percent) that require only inexpensive
Cartesian central FD evaluation.
3.5. Computational sequence

The various components of the present computational scheme for moving bodies in fluid have been
explained in the preceding sections. The overall solution sequence is summarized below, where references
are made to Sections 3.1 and 3.4 for nodal classification:

(i) Generate an initial set of background Cartesian nodes, boundary nodes (which define the body) and the
cloud nodes around the body.

(ii) Identify the inactive Category 1 Cartesian nodes that do not require flow computation.
(iii) Identify Cartesian nodes (Cat. 3) that require the mesh-free WLS-GFD treatment (see Section 3.1).
(iv) Identify the supporting nodes for each of the mesh-free nodes (cloud nodes and Cat. 3. Cartesian nodes)

and calculate their coefficient matrices [C] in accordance with Eq. (10).
(iv) Prescribe initial and boundary conditions, and begin simulation.
(v) At each time level n:

(a) Update and store required nodal variables.
(b) Obtain new positions and velocities of cloud nodes at time level n + 1 arising from the motion of the

body. For prescribed rigid body motion, which is considered here, the cloud nodes convect with the
body in fixed relative positions.

(c) Identify the overlapped (Cat. 1) and ‘fresh’ (Cat. 4) Cartesian nodes that are formed at time level
n + 1 due to the motion of the body (see Section 3.4). Also identify the Category 3 Cartesian nodes
that require WLS-GFD treatment.

(d) Identify supporting nodes and compute [C] matrices for all mesh-free nodes.
(e) Iterate:
� update latest values of un+1 into the intermediate momentum Eq. (14) for the Cartesian (stationary)

nodes and Eq. (20) for the convecting cloud nodes, and solve for u*. WLS-GFD discretization is
used for cloud nodes and the Category 3 Cartesian nodes, while standard FD discretization is
applied to the Category 2 Cartesian nodes.
� Solve for pressure Poisson equation (16) using boundary conditions Eqs. (17) and (18).
� Obtain un+1 using Eq. (15). Iterate for a fixed number of cycles or until satisfactory

convergence.
(vi) At the end of each time step, obtain flow field data at the ‘fresh’ Cartesian nodes (Cat. 4) (see Section

3.4).
(vii) Step forward in time and repeat (v)–(vi) until the desired time level.

The present methodology and its procedures may be naturally extended to three-dimensional (3D) prob-
lems without essential changes – beside obvious ones like having to perform all necessary geometric operations
and to compute the GFD matrices in three dimensions.
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4. Numerical experiments I

In this section, we first verify that the present fractional-step implementation of the weighted-least-square
generalized finite-difference (WLS-GFD) scheme for two-dimensional incompressible fluid flows in the primi-
tive variables (u, v, p) is essentially second order in space and time. Then we examine errors that are associated
with the ALE implementation of the WLS-GFD scheme for prescribed convecting nodes.
4.1. Spatial and temporal accuracy

To test the spatial accuracy of the numerical formulation described in the preceding section, the problem of
decaying vortex was first simulated. This has been a fairly popular test problem for accuracy of numerical
schemes [41,42] because it has a theoretical solution:
uðeÞðx; y; tÞ ¼ � cos px sin pye�2p2t=Re;

vðeÞðx; y; tÞ ¼ sin px cos pye�2p2t=Re;

pðeÞðx; y; tÞ ¼ � 1

4
ðcos 2pxþ cos 2pyÞe�4p2t=Re:

ð23a–cÞ
Here the Reynolds number is Re = UL/t, where U is the maximum velocity at the initial time t = 0, L the size
of the vortex and t, the kinematic viscosity of the fluid. Superscript (e) denotes the exact solution.

The computational domain spans [�0.5, 0.5] · [�0.5, 0.5] and the Reynolds number is set at Re = 10. Sim-
ulations are carried with both square Cartesian and ‘uniformly distributed’ random nodes. The latter are gen-
erated by applying a random perturbation to the former with two-dimensional nodal displacement of up to
15% of the Cartesian mesh size. Ding et al. [36] had carried out a brief study of different schemes of grid point
generation and the performance of the WLS-GFD in solving the Poisson problems. For the present study, the
decaying vortex is simulated for the following four configurations:
Nodal distribution
 Spatial discretization
 Velocity boundary condition
 Pressure boundary condition
Cartesian
 Central-space FD
 Dirichlet
 Dirichlet

Cartesian
 WLS-GFD
 Dirichlet
 Dirichlet

Uniformly random
 WLS-GFD
 Dirichlet
 Dirichlet

Uniformly random
 WLS-GFD
 Dirichlet
 Neumann
The first configuration is the reference case, which employs the standard 5-point central-space second-order
finite-difference approximation. For the next three configurations, spatial discretization is carried out with the
WLS-GFD method. Dirichlet boundary conditions are applied for the velocity (u, v)n+1 and pressure pn+1 in
all cases with the exception of the last, where the Neumann boundary condition Eq. (18) is adopted for the
pressure. The initial velocity and pressure fields at t = 0 are provided by the exact solutions Eqs. (23), and
the solution is marched forward in time numerically until t = 0.4, at which time the maximum norm of the
error is computed.

The spatial accuracy is investigated by varying the average grid interval h. For the case of randomly
distributed nodes, the average grid interval can be taken to be h ¼

ffiffiffiffiffiffiffiffiffiffi
A=N

p
, where A is the area of the compu-

tational domain and N is the total number of computational node points. The marching time step is set at a
small value of Dt = 10�5 for all the above cases. This is to ensure that the contribution of temporal error to the
numerical error is kept very small compared to the spatial error. The numerical error is defined to be the max-
imum norm of the difference between the numerical and exact solutions, i.e. iu � u(e)i1 =
maxX{| u � u(e)|}.

Fig. 4 provides a comparison of the errors in the horizontal velocity u and pressure pfor the four con-
figurations as a function of the average grid interval h. The gradients of the error curves show immediately
that the WLS-GFD scheme indeed has second-order accuracy. Not unexpectedly, the standard second-order
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finite-difference scheme on square Cartesian grid has the smallest numerical error, while the WLS-GFD
scheme with randomly distributed nodes and Neumann boundary condition for pressure has the largest
error.

What this comparison indicates is that the WLS-GFD is second-order in all cases including the worst case
of randomly scattered nodes with Neumann boundary conditions. However, due to the latter’s comparatively
large absolute errors, such random arrangement of nodes is clearly to be avoided. Indeed the mesh-free liter-
ature is filled with frequent discussions concerning the desirability of maintaining star-quality in node distri-
butions, while mesh regularity is a key issue in preserving low discretization errors in FE methods.
Consequently in the applications of our hybrid Cartesian–Meshfree discretization scheme, we have selected
to use ‘layered’ mesh-free grids that offer partial ‘grid orthogonality’ at boundaries whenever possible. Alter-
natively, triangulation routines, such as those available in FE packages, can also be used to generate near star-
quality nodal arrangements at boundaries.

The temporal accuracy of the fractional-step scheme was investigated for flow in a square box [0, 1] · [0, 1]
with the following initial field state:



pressure: y = 2.0124x + 2.9328

u & v: y = 2.0152x + 2.4945

-4

-3.5

-3

-2.5

-2

-1.5
-3.1 -3 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3

lg time step, k

lg
|m

ax
im

um
er

ro
r|

Fig. 5. Log10 of maximum errors in u and p for the decaying function Eq. (23) at t = 0.1 referenced with computational solution derived at
time step k = 0.00001. Best-fit straight lines displaying a gradient of 2. — pressure, - - - u and v.

C.S. Chew et al. / Journal of Computational Physics 218 (2006) 510–548 523
uðx; y; 0Þ ¼ ð1� cos 2pxÞ sin 2py;

vðx; y; 0Þ ¼ ðcos 2py � 1Þ sin 2px;

pðx; y; 0Þ ¼ 0;

ð24a–cÞ
and a Reynolds number of Re = 1000. The no-slip boundary condition is applicable at the four walls. This
problem has been used by a number of researchers, including Perot [43], to evaluate the temporal accuracy
of their numerical schemes.

An orthogonal Cartesian mesh of 81 · 81 grid points was used for this study, in which the reference numer-
ical solution (u, v, p)(r) at time t = 0.1 was obtained with a small time step size of Dt = 10�5. The problem was
repeated for larger time steps, and the maximum errors for velocity iu � u(r)i1 and pressure ip � p(r)i1 at
t = 0.1 were recorded. Fig. 5 shows the variation of the errors with the size of time step Dt. The gradients
of the error curves show that the method is second order in time.

4.2. Decaying vortex with convecting nodal patch

The present work concerns the use of mesh-free convecting nodes to model the prescribed motion of solid
bodies or boundaries against a background grid of Cartesian nodes. In the course of motion of the body, some
Cartesian background nodes are eliminated from computation while new ones are reinstated into active sim-
ulation as they emerge from under the cover of the cloud nodes. In order to understand whether a convecting
cloud or patch of mesh-free nodes will cause any stability problems or create any additional computational
errors, a test problem is deliberated. The aim is to check the numerics of the moving cloud methodology in
isolation, by quantifying the errors associated purely with the motion of a patch of active mesh-free nodes
during the simulation of the flow, without the assumption of a physically moving body.

The test problem is the decaying-vortex problem Eqs. (23), in which the discretized computational domain
comprises a square Cartesian grid overlaid with a small patch or cloud of mesh-free nodes initially residing
near the bottom left-hand corner of the domain (see Fig. 6). The convecting mesh-free cloud is a small 5
by 5 square nodal array with a nodal interval of 0.8h, where h is the grid spacing of the background Cartesian
grid. The convecting nodes are treated by the WLS-GFD method in the ALE formulation, while the standard
FD scheme is applied at the stationary Cartesian background nodes whenever possible. The decaying vortex is
set for Re = 100 and the nodal patch is convected with a velocity of u = v = U sin(2pt/T), where U = 0.25 and
T = 6.0. The decaying vortex is simulated for a series of Cartesian grid spacings h, at a constant time step of
Dt = 0.002, and the solutions at t = 1.0 are obtained for comparison with the exact solution Eqs. (23). The

maximum errors, the L2 error norms (defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 fi � f ðeÞi

� �2

=N

r
) and root-mean-square (RMS) error

norms (defined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðf � f ðeÞÞ2=

P
ðf ðeÞÞ2

q
) of velocity and pressure as functions of grid spacing h are



Fig. 6. Motion of moving patch across the decaying vortex. (s) computational Cartesian node, (j) meshfree node, (}) exterior node.

524 C.S. Chew et al. / Journal of Computational Physics 218 (2006) 510–548



C.S. Chew et al. / Journal of Computational Physics 218 (2006) 510–548 525
depicted in Fig. 7. The gradients of the error curves show that the solutions with the convecting nodal patch
retain second-order spatial accuracy.

To gain a better understanding of the effects that Cartesian node removal and addition (fresh nodes) have
on the solution during the convection of the nodal patch, we decided to record the variation of numerical
errors with time and to compare these against the numerical errors of similar computations carried out on
the same Cartesian grid without the nodal patch. The central-space FD scheme was used in the latter case.
The ratio of the root-mean-square (RMS) errors in the ALE-WLS-GFD moving-patch solution to those in
the stationary-node Cartesian-grid FD solution are computed as a function of time and shown in Fig. 8.
Two neighbours are used for fresh node interpolation using Eq. (22).

It is observed that the errors in the convecting-patch solution get amplified at regular intervals. Analysis
reveals that the intervals correspond precisely with the rate at which the convecting nodal patch is overlapping
new Cartesian background nodes in front and uncovering ‘fresh’ Cartesian nodes in its rear. The removal and
addition of the Cartesian nodes during simulation clearly alter the composition and spatial configuration of
the nodes involved in the WLS-GFD computation around the edge region of the convecting patch. This is
the direct cause of the temporal fluctuations in the numerical errors of the moving-patch solution. The con-
stantly changing nodal distribution does not, however, destabilise the solution process. The errors in the pres-
sure solution grow during the initial phase of patch motion but stay well bounded to less than 1.2 times the
errors of the standard FD solution (no convecting patch) over the solution interval. The errors in the velocity
solutions, on the other hand, suffer a minor initial rise, but quickly decay to levels similar to those of the stan-
dard FD solution with time. It is worth noting that, from Fig. 7, the enhanced levels of error of the moving
patch solution above are no worse than the relative errors between the WLS-GFD solutions and the standard
Cartesian FD solutions for stationary-node cases with the same average grid interval, presented earlier in
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Fig. 4. This suggests that the increased errors of the moving patch solution, which arose from the removal and
addition of nodal points and changing nodal configurations, is no larger than the inherent discretization error
of the WLS-GFD approximation.

The next series of results involves the application of the method to some well-known flow problems with
stationary boundaries.

4.3. Flow past stationary circular cylinders

The first series of test was carried out to verify that the numerical scheme is able to simulate the simpler case of
flow past stationary two-dimensional circular cylinders with a good degree of accuracy. Cylinders subject to
external open flow and channel flow were simulated. It is well known that external flow past a stationary circular
cylinder is steady and symmetric at low Reynolds numbers of up to 40, where Re is based on the diameter D of
the cylinder and the free stream speed U1 of the oncoming flow. The flow in the wake takes the form of a sym-
metric pair of steady counter-rotating vortices, whose streamwise extent increases with Re. Above the Re of 40,
the wake becomes unstable and breaks into unsteady flow comprising periodic build-up and alternate shedding
of vortices from the two sides of the cylinder.

For this series of studies, the cylinder, which is defined by its boundary nodes, is enveloped by a few layers
of cloud nodes and set against a background of uniform square grid (Fig. 9). This in turn is embedded within a
larger computational domain of non-uniform stretched grid to cater for free stream simulation, where the
boundaries of the computational domain have to be placed at a sufficient distance from the solid body (e.g.
Fig. 10). The non-dimensional external boundary conditions are:

at the inflow boundary,
u ¼ ð1; 0Þ; ð25aÞ

at the outflow boundary,
ðot þ oxÞu ¼ ð0; 0Þ; ð25bÞ

and along the top and bottom fluid boundaries,
oyu ¼ ð0; 0Þ. ð25cÞ

On the surface of the cylinder,
u ¼ uc; ð25dÞ

where uc is the prescribed velocity of the cylinder surface, which is zero if the cylinder is stationary. The bound-
ary conditions for the intermediate velocity u* and pressure p are implemented as described in Section 3.2.



Fig. 9. Nodal arrangement for meshless cloud around circular cylinder.
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Free stream, low Reynolds number steady state flows were first solved. Referring to Fig. 10, the computa-
tional domain is of size 15 · 12D2. A total of 1260 cloud nodes and boundary nodes are used, which make up
just 1.5% of the total number of 85,869 nodes employed in this external flow simulation. The cylinder centre is
located at 5D downstream of the inflow boundary. Flows at Re = 10, 20 and 40 were simulated, and the results
are shown in Table 1. The recirculation bubble length, separation angle and drag coefficient for each of the
above flows compare very well with results from the reference publications.

The pressure distributions over the cylinder surface at Re = 20 are computed for two sizes of computational
domain 15 · 12D2 and 19 · 19D2. The results are compared against similar results from He and Doolen [45] in
Fig. 11. Closer agreement is observed for results obtained in the larger domain. The difference between the two
sets of computed results shows clearly the significant effect of domain size on the results at this low Re. This
may also partially explain the spread in the published results in Table 1.



Table 1
Comparison of recirculation lengths, separation angles and drag coefficients of flows around circular cylinder at Re = 10, 20 and 40 for
open field flow

Re References Recirculation length, 2L/D Separation angle (deg) Drag coefficient, CD

10 Present 0.56 28.6 3.09
a. Nieuwstadt (1973) 0.434 28.0 2.828
b. Coutanceau (1977) 0.68 32.5
c. He and Doolen [45] 0.474 26.9 3.17
d. Dennis and Chang (1970) 0.53 29.6 2.846
e. Guo et al. [44] 0.533 31.6

20 Present 1.90 44.2 2.19
a 1.79 43.4 2.053
b 1.86 44.8
c 1.84 42.9 2.152
d 1.88 43.7 2.045
e 1.87 42.3

40 Present 4.6 53.47 1.59
a 4.357 53.34 1.55
b 4.26 53.5
c 4.49 52.84 1.499
d 4.69 53.8 1.522
e 4.4 53.13

References a–d taken from e.
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Fig. 11. Plots of surface pressure coefficient, Cp at Re = 20; � � � results in domain space of 15 · 12D2, — results in domain space of
19 · 19D2, d results from [45].
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Next, using the same spatial setting, unsteady flow at Re = 100 was simulated. A timed sequence of vortic-
ity plots are presented in Fig. 12. The time histories of the drag and lift coefficients are illustrated in Figs. 13
and 14 respectively, where a Strouhal number St = Df/U1 of 0.17 may be deduced, where f is the stabilized
frequency of the lift fluctuation and vortex shedding. This is close to the value of 0.167 cited in [46–48].

A number of runs were also made for flow past the cylinder in a channel of width 4D. The computational
domain extends 2D ahead of the cylinder and ends 5D after the cylinder in the streamwise direction and is cov-
erd by a square Cartesian grid with grid interval of 0.025. The cylinder surface is discretized by 188 boundary
nodes and enclosed by 3 layers of cloud nodes that extend up to a distance 0.06D from the surface. The out-flow
boundary conditions remain as before, while the non-slip flow condition u = (0, 0) is applicable at the channel
walls. The parabolic in-flow velocity profile is given by u = (1.5 � 6(y/H)2, 0) (x-axis located along the centre
line y = 0 of the channel), which give a mean u velocity of 1.0 across the inflow.

The channel flow cases actually offer a better test of accuracy from a numerical viewpoint because the flow
boundary conditions can be more accurately defined here than for open field, free-stream cases, where the



Fig. 12. Vorticity plots of stationary cylinder in free stream at Re = 100, from time t = 65 to t = 75. Sequence starts from top left down to
top right down. Negative vorticity is denoted by dotted lines. Vorticity lines of values ±0.47 indicated in (a), with subsequent intervals of
0.94.
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Fig. 13. Drag coefficient, CD, against time for open field, free stream flow around cylinder at Re = 100.
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Table 2
Comparison of Strouhal numbers, drag and lift coefficients of flows across circular cylinder at Re = 100 for channel flow and open field
flow with blockage

Re = 100 St CD CD,max CD,min CL,max CL,min

Channel flow

Lilek et al. [47] 0.2944 2.908 2.931 2.884 0.7418 �0.7672
Present 0.2985 3.016 3.048 2.975 0.7599 �0.7602

Re = 100 St CD

Open field; blockage = 0.25

Stansby and Slaouti [46] 0.222 1.910
Present 0.224 2.011
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computational domain has to be sufficiently large. The computed quantities of the flow at Re = 100 are com-
pared against the published results of Lilek et al. [47] in Table 2. The agreement is very good for all the com-
puted flow properties. The squeezing effect of the channel walls, compared to the open flow, results in a higher
Strouhal number.

Free stream flow with blockage of 25% was also computed for comparison with Stansby and Slaouti [46].
This is an artificial flow situation in which the non-slip impermeable boundary condition u = (0, 0) at the walls
of the above channel flow is now replaced by the free stream velocity condition of Eq. (25c). The present
results for Strouhal number and mean drag again compare very well with the published results (see Table 2).

To illustrate simulation of higher Reynolds numbers, channel flow at Re of 1000 is simulated, where a finer
mesh-free grid interval of 0.0125 on the cylinder surface and 0.0167 for the Cartesian background grid were used
to capture the finer features of the flow. The channel width is now 5D indicating a blockage ratio of 0.2. Fig. 15
shows the resulting vorticity evolution. A mean drag coefficient and Strouhal number of 3.08 and 0.32 were
obtained which compares fairly well with the values of 3.0 and 0.3 from Zovatto and Pedrizzetti [49] respectively.
The Strouhal number is less accurate, partly due to the difference in the channel lengths used for our simulation
(10D) and the referred results (55D). It is also a well-known fact that flows of higher Reynolds numbers are gen-
erally more difficult to solve. Apart from requiring higher grid resolution, artificial dissipation or upwind treat-
ment may be required to maintain numerical stability. The present scheme does not incorporate any numerical
dissipation treatment at this point of time, although this may be needed eventually for applications at higher
Reynolds numbers.

4.4. Flow past stationary odd-shaped cylinder

An odd-shaped cylinder of cross-sectional width D = 1.0 is subjected to a free stream flow as in Section 4.3.
Fig. 16 shows the geometry of the cylinder and the mesh-free nodal cloud generated around the cylinder by a
triangulation routine. Periodic vortex shedding is observed for the cylinder at Re = 200. Fig. 17(a) and (b)
show the instantaneous streamlines and vorticity contours around the cylinder. The streamlines and vorticity
contours can be seen to extend through a narrow gap into the cavity on the underside of the cylinder, suggest-
ing the presence of weak flow re-circulations within the cavity. This example demonstrates the facility of the
present hybrid Cartesian–Meshfree to handle objects with complex geometry that may not be easily amenable
to treatment by conventional boundary-fitting O- or C-grid discretization.

5. Numerical experiments II

The full ALE-WLS-GFD scheme is applied to a series of problems involving moving circular cylinders:
impulsively and sinusoidally-started cylinders, symmetric and asymmetric flows past longitudinally oscillat-
ing cylinders and flows past transversely oscillating cylinders with lock-on and lock-off vortex shedding.
The results are compared against solutions obtained from equivalent moving-frame simulations and pub-
lished results in literature. These cases provide a test of the ability of the scheme to handle moving body
problems.



Fig. 15. Vorticity plots of channel flow past stationary cylinder at Re = 1000. Sequence starts from top left down to top right down, from
time t = 77 to time t = 79.5. Negative vorticity is denoted by dotted lines.

Fig. 16. Nodal arrangement of an odd-shaped cylinder in a free stream flow.
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Fig. 17. (a) Streamline plot of free stream flow past stationary odd-shaped cylinder at Re = 200. (b) Vorticity plot of similar cylinder.
Direction of flow indicated by arrow, from left to right. Negative vorticity is denoted by dotted lines.
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5.1. Accuracy test on ALE implementation

The first task is to verify the accuracy of our numerical method when handling problems with moving
boundary. A common test case to perform is the oscillating circular cylinder (or sphere for 3D) in a box enclo-
sure, as performed by both Udaykumar et al. [26] and Gilmanov and Sotiropoulos [27].

A circular 2D cylinder of size D = 0.5 is placed in a square box of length 2D and is made to oscillate at a
frequency of f = 1/T = 1/0.4p, at Re = 40. Since there is no known exact solution for this problem, a reference
solution is first computed for time t = 0.3, with the cylinder surface grid spacing of h(reference) = 0.00455
(2D/220), and background grid size of 0.005. Subsequently, three runs were conducted with varying surface
(and background) spacings of h = 0.01, 0.0126 and 0.0167. The obtained flow fields at t = 0.3 are compared
with the reference solution, and the maximum errors in velocity and pressure are noted. Fig. 18 shows the log–
log curves of the errors against the surface grid spacing. The gradients are found to be close to the value of 2,
signifying that the order of accuracy is still preserved at 2 after implementing the ALE formulation.

5.2. Flow past impulsively and sinusoidally started circular cylinders

As further tests of the present ALE implementation, flows past sinusoidally and impulsively started cylinders
in an otherwise stationary fluid medium are computed. The ALE results for moving cylinders against a fixed
stationary Cartesian grid (the present scheme) are compared against similar results computed in a moving/
Gradient = 2

-2.5

-2.3

-2.1

-1.9

-1.7

-1.5

-1.3

-1.1

-0.9

-0.7

-0.5
-2.05 -1.95 -1.9-2 -1.85 -1.8 -1.75

velocity

pressure

Fig. 18. Log10 of maximum errors in u, v, p for the oscillating circle in a box enclosure at t = 0.3 referenced with computational solution
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accelerating reference frame attached to the moving cylinders. In the latter mode, the cylinders have fixed coor-
dinates, and the governing NS equations incorporate a frame acceleration term:
ou

ot
þ ðu � rÞu ¼ �rp þ 1

Re
r2uþ ouframe

ot
. ð26Þ
Furthermore, the boundary conditions of the computational domain would be modified to reflect their values
in the moving reference frame of the cylinder. No ALE/moving-node algorithm or ‘fresh’ node creation are
involved here at all. The moving or accelerating frame method has been an established method because of
its great simplicity. However, it is greatly limited in that it cannot be applied to flow problems involving
two or more bodies undergoing relative motions, and even to single body moving within a finite enclosure.
It is through the use of this established method that we can derive comparison in results to ensure that our
scheme is stable and accurate.

Simulations using the stationary reference frame were conducted similar to the previous external flow cases,
with the incorporation of the ALE moving body algorithm for the starting cylinders. Eq. (25c) is applicable at
the top and bottom sides of the domain and the convective boundary condition is now applied at the left and
right boundaries of the domain:
ðot þ umeanoxÞu ¼ ð0; 0Þ; ð27Þ
where umean denotes the average inlet/outlet velocity along the boundaries. One can also replace it with the
local flow velocity at the previous time step, un. For the impulsively started cylinder,
ucðtÞ ¼ ucð0Þ ¼ ð1; 0Þ; ð28aÞ
and for the sinusoidally started cylinder,
ucðtÞ ¼ ðsin 2pt=T ; 0Þ; ð28bÞ
where T is the period of cylinder oscillation.
For the moving or accelerating frame simulations, the boundary conditions are
uframe;oXðtÞ ¼ �ucðtÞ ¼ �1; ð29aÞ

and
uframe;oXðtÞ ¼ �ucðtÞ ¼ � sin 2pt=T ; ð29bÞ

for the impulsively and sinusoidally started cylinders respectively along the outer boundary oX of the com-
putational domain. For the impulsively started cylinder, the sharp initial acceleration of the cylinder is car-
ried out numerically by increasing the cylinder velocity linearly from 0.0 to 1.0 in a short time interval of
t = 0.02.

Tang and Aubry [50] employed the impulsively started cylinder at Re = 100 to validate their numerical
scheme, and their resulting drag coefficient history agreed well with other published results [51,52]. The drag
coefficient histories of the present simulation are plotted and compared with that of [50] in Fig. 19. From the
figure, it can be seen that the results from both the present ALE-WLS-GFD moving body formulation and the
accelerating or moving frame formulation are generally consistent with each other and match well the results
of Tang and Aubry. The moving frame results are obtained with WLS-GFD discretization on the modified NS
Eqs. (26) with uc ” 0 for the cylinder. Similar to the impulsively started case, both the ALE moving body and
the moving frame simulations are performed for a sinusoidally started cylinder. The resulting drag coefficient
histories at Re = 20 can be seen in Fig. 20. The runs from t = 0 to t = 1.5 show that the two curves follow each
other closely with generally small deviations.

Dynamically, the ALE formulation and the accelerating/moving frame formulations should be equivalent
for the present cylinder cases. However, in numerical implementation, some minor differences in results may
still arise due to the different configurations of the finite computational domains and the non-exact equivalence
of the boundary conditions under the two approaches. Nevertheless, the results from the moving body simu-
lations are seen to match very well corresponding results from the moving frame simulations, indicating that
the moving-body ALE-WLS-GFD formulation is working very well indeed.
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5.3. Transient flow past longitudinal oscillating circular cylinders

Computation is carried out for flow past circular cylinders undergoing sinusoidal longitudinal oscillations.
This is an extension of the case for sinusoidally-started cylinder in the preceding section. The flow configura-
tion remains the same. The flow is, however, simulated for a much longer computational time of about 20
oscillation cycles to allow the flow to reach a nearly stationary periodic state.

Depending on the Reynolds number Re = UmaxD/t and the Keulegan–Carpenter number KC = UmaxT/D
(where Umax and T are the velocity amplitude and period respectively), the flow around the cylinder may
develop either symmetric or asymmetric vortical structures. The boundary in the Re–KC parameter plane sep-
arating symmetric flows and asymmetric flows has been determined in visualization experiments by Tatsuno
and Bearman [53] and also numerically by Iliadis and Anagnostopoulos [54]. The latter employed the finite
element method and the streamfunction-vorticity (w, f) flow formulation with moving frames and oscillating
boundary conditions.

Two cases with Re–KC parameters in the vicinity of the boundary delineating the two flow regimes are spe-
cially selected to test the capability of the present numerical scheme to develop the correct flow patterns. The
first case with Re = 200 and KC = 4 is shown in Fig. 21. It displays a symmetric pattern of vortical flow for-
mation through one half of an oscillation cycle. The pattern of vortex formation through the cycle compares
very well with similar symmetric flow results presented by [54].



Fig. 21. Comparison of vortex shedding in half a cycle, KC = 4, Re = 200. Left-hand side: Ref. [54], right-hand side: present study.
Negative vorticity denoted by dotted lines. Vorticity lines of values ±0.646 indicated in (a) by arrows, with subsequent intervals of 1.29.
Dashed vertical line denotes the extreme left position of the cylinder centroid.
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The second case was computed with Re = 200, KC = 10, which falls within the regime of asymmetric flows.
Fig. 22 shows the comparison of the vorticity distributions with [54] in half an oscillation cycle, and Figs. 23
and 24 show the drag and lift histories compared to the similar results in [54]. The present simulation captures
all the major vortical features of the flow around the cylinders, with some smaller differences arising in the
weak vortical features further away from the cylinder. The drag and lift histories show good agreement with
[54] with regards to the overall trend and phasing of the coefficient peaks. The peak values of CD are also in



Fig. 22. Comparison of vortex shedding in half a cycle, KC = 10, Re = 200. Cylinder going from rightmost position to leftmost position.
Left-hand side: Ref. [54], right-hand side: present study. Negative vorticity denoted by dashed lines. Vorticity lines of values �0.308 and
0.463 indicated by arrows in (a), with subsequent intervals of 0.772.
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very good agreement, while there is some disagreement with regards to the inflexion regions in the CD curves
(Fig. 23) and the CL peaks (Fig. 24).

The differences in the details with [54] may be attributable to the relatively limited size of our computational
domain of 15 · 12D2 compared to the much larger 40 · 20D2 employed in [54]. The smaller domain may not
be able to fully accommodate and account for the spatially extended systems of interacting vortices that
develop in the asymmetric cases. It is worth noting, however, that the mentioned results from Iliadis and
Anagnostopoulos [54] have not been verified against other experimental or numerical results, and the compar-
ison above should hence be regarded purely on a qualitative basis. Probably of more significance in the present
instance is the very good agreement and mutual consistency between the present moving body (ALE) results
(see Figs. 23 and 24) and the physically equivalent moving frame results. The very good match with the mov-
ing frame solution demonstrates the stability of the present moving body ALE method for extended time
computation.
5.4. Flow around transversely oscillating cylinder

Koopmann [55] carried out one of the first detailed experimental studies of wake formation behind trans-
versely oscillating circular cylinders in external flow. He observed a phenomenon, which is now popularly
known as lock-on, whereby the vortex shedding frequency fv in the wake is identical to the driving frequency
fc of the oscillating cylinder. The lock-on of fv onto fc occurs in the vicinity of the natural shedding frequency
fn of the cylinder, which is the vortex shedding frequency of the corresponding stationary or non-oscillating
cylinder. At Re = 100, the non-dimensional natural frequency fn = St = 0.17 in Section 4.3. The lock-on region
is the range of frequency about fn for which the phenomenon of frequency lock-on occurs. The upper and lower
limits of the frequency lock-on region may be determined by directly comparing the shedding frequency fv in the
wake against the driving frequency fc, when the latter is progressively varied. The frequency lock-on region is
dependent on the Re of the flow (which governs fn) as well as the amplitude A of cylinder oscillation.

For the present ALE-WLS-GFD simulations, the transverse trajectory and velocity of the centre of the cyl-
inder are given by ycen = Asin(2pfct) and vcen = A2pfccos(2pfct), with corresponding expressions for boundary
nodes on the cylinder and the cloud nodes. Flows with Re = 100 and oscillation amplitude A = 0.1 and 0.2 are
simulated in the present work. The ranges of frequencies studied are 0.86–1.19fn and 0.775–1.28fn respectively
at the two amplitudes. Lock-on is reckoned to have occurred if |fv � fc| < 0.04fc. Lock-on can be observed
from the phasing of the lift curve relative to cylinder oscillation. The results are summarized in Fig. 25, where
the full circular symbol d denotes that lock-on had been observed while the empty square symbol h denotes
no lock-on. The occurrences of both are in very good accordance with approximate upper and lower fre-
quency limits of the lock-on region established by [55].
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The characteristic features of the flow in the wake are also consistent with descriptions given by [55,56].
Corresponding wake formations for the same cylinder driven with amplitude A = 0.2 at frequencies fc = fn,
fc > fn and fc < fn are depicted in Figs. 26–28 respectively. For a cylinder driven at its natural shedding fre-
quency, i.e. fc = fn, they observed a decrease in the average lateral spacing between the shedded vortices, while
the longitudinal spacing remains largely unchanged. Furthermore, the synchronous shedding of the vortices
Fig. 26. Vorticity plots at Re = 100, fc = fn , A = 0.2. Negative vorticity denoted by dotted lines. Vorticity lines of values ±0.377 indicated
in (a) by arrows, with subsequent intervals of 0.754. Sequence starts from top left down to top right down, from time t = 73.5 to 78.5.
Centre dashed horizontal line denotes mean y position.



Fig. 27. Vorticity plots of oscillating cylinder at A = 0.2, fc = 128% fn. Negative vorticity denoted by dotted lines. Vorticity lines of values
±0.391 indicated in (a) by arrows, with subsequent intervals of 0.782. Sequence starts from top left down to top right down, from time
t = 73.5 to 78.5. Centre dashed horizontal line denotes mean y position.
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occurs on the same side as displacement of the cylinder. These features are also reproduced in the present
simulation.

When fc > fn, the vortices are more promptly shed (Fig. 27), which is consistent with the lock-on of the
shedding frequency fv to the higher values of fc. The vortices are now shedded on the opposite side to the cyl-
inder displacement in agreement with the observations of [55,56]. When fc < fn, referring to Fig. 28, vortex
shedding appears more sluggish so much so that it approaches ‘collinear’ pattern, instead of well-defined coun-
ter-rotating vortices along the two sides of the vortex street. The longitudinal vortex interval is about 2.5D

compared with 2.2D for fc = fn, and vortex shedding now occurs on the same side as cylinder displacement.
The above test cases for flows past starting cylinders, longitudinally oscillating and transversely oscillating

cylinders show that present the WLS-GFD method under ALE formulation is an effective numerical scheme
for simulating flows with moving solid bodies. The good agreement between the moving body and moving
frame simulations also provides strong and ample evidence that the hybrid ALE FD-GFD methodology mov-
ing-body computation is working very well.

6. Numerical experiments III

Extensions to complex geometries and motions, including uncorrelated motions, of multiple bodies can be
carried out with relative ease in the present moving-boundary formulation. We demonstrate this with three
body-driven cases: a flapping elliptical cylinder, a pair of asynchronously counter-rotating elongated cylinders
and an oscillating circular cylinder. All three flows have been carried out for confined flow within a rectangular
box. The moving frame method, mentioned in the preceding section, cannot be used to treat this class of
problems.



Fig. 28. Vorticity plots of oscillating cylinder at A = 0.2, fc = 77.5% fn. Negative vorticity denoted by dotted lines. Vorticity lines of values
±0.333 indicated in (a) by arrows, with subsequent intervals of 0.667. Sequence starts from top left down to top right down, from time
t = 73.5 to 78.5. Centre dashed horizontal line denotes mean y position.
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6.1. Flapping elliptical cylinder in a box

Fig. 29 shows the arrangement of nodes around the flapping elliptical cylinder. Three elliptically-arranged
layers of cloud nodes are employed. The ellipse, which has major and minor diameters of 0.5 and 0.15 respec-
tively, is positioned in a square box spanning [�1, 1] · [�1, 1]. The flapping motion involves the simultaneous
translation and rotation of the ellipse. It is generated by an imaginary oscillating arm of length 2.5 and having
its centre of oscillation at (�1.5, 0). The arm is oscillated about the x-axis in accordance with the angular posi-
tion and velocity functions h ¼ � _hoT cosð2pt=T Þ=2p and _h ¼ _ho sinð2pt=T Þ respectively. The trajectory sche-
matic of the elliptic cylinder is shown in Fig. 30. The Reynolds number based on the major diameter and
maximum tip velocity is Re = 7.5 in Figs. 31 and 32 (T = 20, _h ¼ 0:1) and Re = 22.5 in Fig. 33 (T = 10,
_h ¼ 0:3).

The flow is simulated for a period of 5–6 cycles of flapping motion, and the resulting streamline and vor-
ticity plots are shown in Figs. 31 and 32 respectively. Fig. 31 shows an approximate quarter cycle, with the
ellipse in an upward motion (parts (a) to (b)). This is followed by a turnaround (part (c)) and the ‘flap’ back
downwards (parts (d) to (f)).

The motion of the elliptic cylinder generates two tip vortices. They are shown in part (a) as vortex pair A,
which is highlighted by dotted ovals. The tip vortices are shed as the cylinder approaches the top end of its
trajectory (parts (a) to (c)). The more dominant tip vortex is the outer tip vortex Ar since the outer tip of
the ellipse has the higher velocity. As the cylinder reverses its direction downwards, a new pair of counter
rotating tip vortices Cl and Cr is formed (part (d)). The right vortex then merges with the nearby corner vortex
B of the same sign to form a larger tip vortex Cr (parts (d) to (e)). Meanwhile the shed tip vortex Al from the
preceding up-flap motion disappears (parts (c)–(e)). Finally, the remaining outer tip vortex Ar (formed during



Fig. 29. Nodal arrangement of the flapping ellipse. The meshless cloud represented by three layers of nodes along ellipses of varied ‘radii’.

Fig. 30. Flapping motion of the elliptic cylinder. Cylinder starts oscillation at ho ¼ � _hoT=2p at t = 0.
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the up-flap) can be seen to merge with the new inner tip vortex Cl in parts (e) to (f), both having the same sign.
In part (f), we may also observe the right outer tip vortex Cr reaching out to merge with the lower right corner
vortex of the same sign. This simulation shows the rather interesting phenomenon in which the vortical flow
generated by the outer tip in one quarter of the cycle is passed on to reinforce the inner tip vortex in the next
quarter of the cycle.

The flow is next solved for an oscillation period of T = 10 and _ho ¼ 0:3, with all other parameters remaining
unchanged. The Reynolds number is Re = 22.5. Fig. 33 shows a Lissajous plot of the vertical force coefficient
Fy against the horizontal force coefficient Fx on the ellipse. It can be seen that there are two horizontal force
cycles for every vertical force cycle.

6.2. Non-synchronously counter-rotating cylinders in a rectangular box

The second test case demonstrates the application of the method to two bodies undergoing independently
prescribed non-colliding motion in a rectangular box. The two moving bodies comprise two elongated cylin-
ders rotating about their centres in opposite directions. The left cylinder rotates in the anti-clockwise direction



Fig. 31. Streamline plots of flapping ellipse within an enclosed box, from time t = 48 to 53, at time intervals of 1.0. The ellipse approaches
the highest point at (c) in the upstroke, and turns back to make a downstroke ((d)–(f)). Annotated dashed ovals trace the development of
the key vortical structures in the flow.
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Fig. 32. Vorticity plots of flapping ellipse within an enclosed box. Sequence starts from top left down to top right down in a half cycle,
from time t = 50 to t = 60. Negative vorticity is denoted by dotted lines.
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with a non-dimensional period T = 2p, while the right cylinder rotates in the clockwise direction with T = 4p.
A Reynolds number of Re = 50 based on the tip-to-tip length of the cylinder and the tip velocity of the left
cylinder is used in this simulation. The ensuing time-dependent flow in the box is relatively complex, not unex-
pectedly – some snapshots of vorticity are presented in Fig. 34.

The overall dynamics of the flow may be briefly described as follows. Focusing attention first on the left
cylinder, the vorticity distribution around the cylinder shows that the fluid elements adjacent to the flat sides
of the cylinder are driven into anti-clockwise rotation (positive vorticity) by the anti-clockwise motion of the
cylinder. Regions of strong negative vorticity (clockwise rotating flow) are generated near the two ends of the
cylinder as the fluid is forced to go around them. The exact opposite distribution of positive and negative vor-
ticities occur around the right clockwise rotating cylinder. The vorticity magnitudes are smaller because of the
lower rotational speed of the right cylinder. The figures show that the bulk of the negative vorticity is pro-
duced by the tips of the left cylinder. The negative vorticity thus generated by the left cylinder convects
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Fig. 34. Vorticity plots of the non-synchronously counter rotating cylinders through time t = 45 to t = 50 at time intervals of 1.0. Negative
vorticity is denoted by dotted lines.
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and diffuses to the right, where it may be observed to reinforce the regions of negative vorticity along the sides
of the right cylinder – note the continuous region of negative vorticity that extends from the tips of the left
cylinder to one side or even two sides of the right cylinder. The negative vorticity from the right cylinder also
acts to help neutralize the positively-signed vorticity emanating from the tips of the right cylinder, which may
be deduced from careful examinations of the results.
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6.3. Driven flow by an oscillating circular cylinder within an enclosed box

In this simulation, a circular cylinder is made to oscillate sinusoidally within a square enclosure of dimen-
sions 4 · 4D2. The period of oscillation is set such that the Reynolds number based on the cylinder diameter
and the cylinder’s maximum velocity is 1000. Fig. 35 displays four consecutive instances of the vorticity and
streamfunction fields. The top half of each plot displays the vorticity contours, while the bottom half displays
the streamlines. Starting from (a), the cylinder begins its travel towards the right side of the enclosure. A pair
of symmetric trailing vortices can be seen at its rear in part (b). While an ‘older’ pair of vortices are seen resid-
ing in front of the cylinder, they immediately get compressed by the approaching cylinder and make their way
around it in part (c) as the cylinder reaches the end of its travel. This is then followed by the cylinder making
its way back to the left in part (d).

This result shows that the present scheme can solve body-driven flows for up to moderately large Reynolds
numbers without the explicit inclusion of numerical dissipation. Numerical dissipation will be needed, however,
to maintain computational stability at higher Reynolds numbers. A QUICK scheme was used by Gilmanov and
Sotiropoulos [27] for their Cartesian/immersed boundary method. This will be a subject for our future study.
Fig. 35. Vorticity-streamline plots of flow generated by circular cylinder in oscillation at Re = 1000 in an enclosed box at instances of time
(a) t = 0.149T, (b) t = 0.308T, (c) t = 0.546T and (d) t = 0.652T respectively, where T is the period of oscillation. Upper half of each plot
displays vorticity contours, while lower half displays streamlines. Cylinder travels to the right in (a) and (b), and to the left in (c) and (d).
Negative vorticity is denoted by dotted lines.
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7. Conclusions

A numerical scheme adapted for simulation of moving boundary and moving body is proposed in this
work. The method is based on a weighted least squares (WLS) generalized finite-difference (GFD) scheme
for mesh-free spatial discretization and the Arbitrary Lagrangian–Eulerian (ALE) formulation of the govern-
ing incompressible flow equations for convecting nodal points. Solution of the flow equations is accomplished
with a fractional-step projection method based on the second-order Crank–Nicolson time scheme. Moving
bodies in flow are defined and enveloped by mesh-free clouds of nodes and allow to convect against a back-
ground of stationary Cartesian nodes. Away from boundaries and bodies, the standard 5-point FD scheme is
applicable on the Cartesian grids. Typically the mesh-free nodes form a small fraction of the total nodal pop-
ulation. The present hybrid-grid method combines the advantages of mesh-free discretization for precise
definition of bodies and good resolution of boundary regions with the efficiency of standard Cartesian FD
scheme.

The ALE-WLS-GFD scheme was applied to a series test problems involving stationary and moving bodies
in flow, including flow past circular cylinders in open and channel domains, impulsively and sinusoidally
started cylinders, and longitudinally and transversely oscillating cylinders in flows. The results obtained
showed very good consistency with similar results derived using a moving-frame method. The results also
agreed well with published literature and the well-documented flow phenomena for oscillating cylinders are
correctly reproduced. The method was further applied to body-driven flows in enclosures to demonstrate
the flexibility of the method and the handling of multiple bodies undergoing independent non-collisional
motion: a flapping elliptic cylinder in a square box and a pair of asynchronous counter-rotating elongated cyl-
inders in a rectangular box. Examples for an odd-shaped cylinder illustrates the scheme’s ability to handle
complex body geometry. The method has been successfully applied on flows with Reynolds numbers up to
1000 without explicit use of artificial dissipation. For higher-Re flows and complex bodies with highly angular
features, some degree of artificial dissipation will be needed.

The method has several advantages over the conventional numerical schemes as it can model complex
bodies and motions without invoking domain transformation and remeshing. Interpolation is kept at a very
minimal level associated with fresh nodes creation. Although discretization at mesh-free nodes tends to be
more computationally expensive, they usually form only a small fraction of the total nodal population. Fur-
thermore, the density of mesh-free nodes around bodies may be freely varied to give good resolution to bound-
aries and boundary events, which may be more difficult to achieve with purely Cartesian-based grid or volume
methods. The treatment of the overlapped and fresh nodes exemplifies the ease with which nodal removal and
addition can be accomplished during the simulation process. The work is done in two dimensions, but the
primitive-variables formulation of the flow equations will permit a natural extension of the scheme to
three-dimensional moving body/boundary flows. The method also has in-built flexibilities that will facilitate
its extension to treat deforming bodies or boundaries, which are frequently encountered in biological flows.
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